高壓放大器在射頻信號傳感特性測試系統(tǒng)研究中的應用
實驗名稱:射頻信號傳感特性測試系統(tǒng)設計
測試設備:高壓放大器、任意函數(shù)發(fā)生器、示波器、射頻信號傳感器、激光器、光電探測器等。
實驗過程:
圖一:射頻信號傳感特性測試系統(tǒng)
搭建了如圖一所示的射頻信號傳感特性測試系統(tǒng)。激光器產(chǎn)生激光經(jīng)過射頻電場傳感,在其內(nèi)部發(fā)生電光調(diào)制和偏振干涉,經(jīng)過調(diào)制的光信號在光電探測器處進行電光轉換,輸出傳輸至示波器來表達射頻信號傳感的輸出。采用信號發(fā)生器產(chǎn)生待測任意小信號(如正弦波、方波、三角波等),之后經(jīng)過高壓放大器將任意小信號放大,輸出高電壓信號,高壓放大器的高電壓輸出經(jīng)過高壓引線施加到射頻信號傳感兩端的平行板電極,用于產(chǎn)生均勻電場來測試、校驗射頻信號傳感的特性,另一路輸出接到示波器用于信號監(jiān)測和與射頻信號傳感的實際輸出進行對比。
實驗結果:
射頻信號傳感輸入輸出特性實驗中,采用射頻信號傳感特性測試系統(tǒng)來測試射頻信號傳感的實際性能,633nm激光器產(chǎn)生激光傳輸?shù)缴漕l信號傳感,待測射頻電場對激光產(chǎn)生調(diào)制作用,調(diào)制后傳輸至光電探測器,光電探測器將接收到的激光轉變?yōu)殡娦盘栞敵觯敵鲂盘杺鬏斨潦静ㄆ黠@示輸出結果,同時高壓放大器的一路信號輸出也連接到同一示波器,取時間坐標一致進行監(jiān)測和對比。采用信號發(fā)生器產(chǎn)生工頻正弦信號,經(jīng)過高壓放大器后施加到平行板電極上,平行板電極正負極分別置于傳感晶體上下表面。
圖二:工頻電場作用下射頻信號傳感響應
如圖二所示工頻電場作用下射頻信號傳感的響應,測量結果表明:射頻信號傳感輸出與電場強度有正相關變化趨勢。
保持輸入電壓的頻率50Hz不變,幅值10V開始逐漸升高,在射頻信號傳感上施加工頻正弦電壓,分別記錄每個輸入電壓所對應的傳感器輸出電壓大小,測試結果如圖四(a)所示。可以看出,在一定范圍內(nèi)射頻信號傳感的輸入輸出存在線性關系,如果增大外加電壓的頻率,我們?nèi)匀豢梢缘玫酵瑯拥木€性關系。
圖三:線性擬合分析結果
對測量結果進行線性擬合,線性擬合方程的參數(shù)如上圖三所示,線性擬合度越接近1,表示數(shù)據(jù)點在回歸線周圍分布更加緊密,擬合程度越好。從實驗數(shù)據(jù)和數(shù)值分析來看,本工作設計的射頻信號傳感的輸出電壓與施加電場成良好的線性關系。
為了測試射頻信號傳感的頻率響應,實驗中保持施加信號幅值50V不變,信號頻率從50Hz逐漸增大到2kHz,得到射頻信號傳感的頻率響應曲線如圖四(b)所示。可以看出,隨著頻率增加,射頻信號傳感輸出電壓呈現(xiàn)非線性下降,這主要是由于平行板電極自身響應頻率的限制。針對高頻、低振輻射頻信號的測量需要對電光晶體采用波導結構設計。
圖四:射頻信號傳感特性。(a)射頻信號傳感輸入輸出特性。(b)射頻信號傳感頻率響應曲線
高壓放大器推薦:ATA-7010
圖:ATA-7010高壓放大器指標參數(shù)
本文實驗素材由西安安泰電子整理發(fā)布,如想了解更多實驗方案,請持續(xù)關注安泰官網(wǎng)www.xiangmeiwang.com。Aigtek是國內(nèi)專業(yè)從事測量儀器研發(fā)、生產(chǎn)和銷售的高科技企業(yè),一直專注于高壓放大器、電壓放大器、功率放大模塊、高精度電流源等測試儀器產(chǎn)品的研發(fā)與制造。
原文鏈接:http://www.xiangmeiwang.com/news/3990.html